Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 129(1): e2023JD039505, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38440118

RESUMO

Upward lightning (UL) has become a major threat to the growing number of wind turbines producing renewable electricity. It can be much more destructive than downward lightning due to the large charge transfer involved in the discharge process. Ground-truth lightning current measurements indicate that less than 50% of UL could be detected by lightning location systems (LLS). UL is expected to be the dominant lightning type during the cold season. However, current standards for assessing the risk of lightning at wind turbines mainly consider summer lightning, which is derived from LLS. This study assesses the risk of LLS-detectable and LLS-undetectable UL at wind turbines using direct UL measurements at instrumented towers. These are linked to meteorological data using random forests. The meteorological drivers for the absence/occurrence of UL are found from these models. In a second step, the results of the tower-trained models are extended to a larger study area (central and northern Germany). The tower-trained models for LLS-detectable lightning are independently verified at wind turbine sites in this area and found to reliably diagnose this type of UL. Risk maps based on cold season case study events show that high probabilities in the study area coincide with actual UL flashes. This lends credibility to the application of the model to all UL types, increasing both risk and affected areas.

2.
Clim Dyn ; 61(9-10): 4125-4137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854482

RESUMO

The response of lightning to a changing climate is not fully understood. Historic trends of proxies known for fostering convective environments suggest an increase of lightning over large parts of Europe. Since lightning results from the interaction of processes on many scales, as many of these processes as possible must be considered for a comprehensive answer. Recent achievements of decade-long seamless lightning measurements and hourly reanalyses of atmospheric conditions including cloud micro-physics combined with flexible regression techniques have made a reliable reconstruction of cloud-to-ground lightning down to its seasonally varying diurnal cycle feasible. The European Eastern Alps and their surroundings are chosen as reconstruction region since this domain includes a large variety of land-cover, topographical and atmospheric circulation conditions. The most intense changes over the four decades from 1980 to 2019 occurred over the high Alps where lightning activity doubled in the 2010 s compared to the 1980 s. There, the lightning season reaches a higher maximum and starts one month earlier. Diurnally, the peak is up to 50% stronger with more lightning strikes in the afternoon and evening hours. Signals along the southern and northern alpine rim are similar but weaker whereas the flatlands surrounding the Alps have no significant trend.

3.
J Geophys Res Atmos ; 128(10): e2022JD037776, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38439996

RESUMO

Upward lightning is rarer than downward lightning and requires tall (100+ m) structures to initiate. It may be either self-initiated or triggered by other lightning discharges. While conventional lightning location systems (LLSs) detect most of the upward lightning flashes superimposed by pulses or return strokes, they miss a specific flash type that consists only of a continuous current. Globally, only few specially instrumented towers can record this flash type. The proliferation of wind turbines in combination with damages from upward lightning necessitates an improved understanding under which conditions self-initiated upward lightning and the continuous-current-only subtype occur. This study uses a random forest machine learning model to find the larger-scale meteorological conditions favoring the occurrence of the different phenomena. It combines ground truth lightning current measurements at the specially instrumented tower at Gaisberg mountain in Austria with variables from larger-scale meteorological reanalysis data (ERA5). These variables reliably explain whether upward lightning is self-initiated or triggered by other lightning discharges. The most important variable is the height of the -10°C isotherm above the tall structure: the closer it is, the higher is the probability of self-initiated upward lightning. For the different flash types, this study finds a relationship to the larger-scale electrification conditions and the LLS-detected lightning situation in the vicinity. Lower amounts of supercooled liquid water, solid, and liquid differently sized particles and no LLS-detected lightning events nearby favor the continuous-current-only subtype compared to the other subtypes, which preferentially occur with LLS-detected lightning events within 3 km from the Gaisberg Tower.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...